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This paper describes a three-dimensional finite element-strain energy method for characterizing 
vibration coupling effects on damping of laminated composites. The analysis was performed on 
graphite-epoxy laminated cantilever beams in two stacking sequences: (i) 12-ply symmetric 
laminates I-1 2(0)], and (ii) 12-ply antisymmetric laminates 1,-6(0)/6( - 0)]. Thus, the effects of 
vibration coupling between bending and twisting in symmetric laminates, and between extension 
and bending in antisymmetric laminates on damping were studied. A modal strain energy method 
was applied in a finite-element formulation to solve for the natural frequencies, mode shapes and 
energy dissipation of the laminates. The coupling energy dissipation was separated from the 
non-coupling energy dissipation by the decomposition of the tOtal energy dissipation in order to 
study its contribution to damping. The results of the first three modes, which includes two flexural 
modes and one torsional mode, are presented. The resulting torsional damping data are generally 
higher than the flexural damping data. The coupling effects on damping in flexural modes were 
found to be more significant than those in torsional modes, and such effects appear to be 
dependent upon the fibre angle and the vibration mode of interest. The coupling effects appear to 
increase damping in flexural modes, and were found to be maximized at a fibre angle around 30 ~ 
The non-coupling energy dissipation was found to be more dominant for the flexural modes at 
a fibre angle of 90 ~ , and it appears to be more dominant at a fibre angle of 0 ~ in torsional modes, 
however. 

1. Introduction 
There are a number of possible coupling modes of 
interest in vibrating composite structures. One of the 
major coupling modes in symmetric composite lam- 
inates is the coupling between bending and twisting. 
The coupling between bending and extension 
(or bending-membrane), however, would only be pres- 
ent in non-symmetric laminates. So far, the effects of 
vibration coupling on natural frequencies and mode 
shapes have received much attention in the design and 
control of composite materials and structures I-1-5]. 
For example, Pryor and Barker [1] used a finite 
element method to study the effect of bending-exten- 
sional coupling on the elastostatic behaviour of angle- 
ply laminated composites. Abarcar and Cunniff [2] 
investigated the effect of bending-twisting coupling on 
frequencies and mode shapes of symmetric composite 
laminates. On the other hand, the combined effect of 
bending-extensional and bending-twisting coupling 
on frequencies of non-symmetric composite laminates 
has been studied by Thornton and Clary [3]. They 
concluded that the combined coupling effects are such 
that they reduce bending stiffness and lower natural 
frequencies. Although considerable advances have 
been previously achieved in the analysis of vibration 

coupling on frequencies and mode shapes of advanced 
composite structures, the coresponding effects on 
damping and the cause of such effects have not been 
fully investigated. This paper describes a particular 
method for characterizing the effects of vibration 
coupling on damping of laminated composites. 

Previous work in the area of damping analysis that 
appears to be relevant to our current work was the 
work by Adams and Bacon [6]. They used a strain 
energy method in a two-dimensional static analysis to 
study the effects of fibre orientation and laminate 
geometry on the flexural and torsional damping of 
fibre-reinforced composites. However, no attempt was 
made to investigate the contribution of coupling 
energy dissipation to damping. Related work by Lin 
et aL [7] and Adams and Lambert [8] also involved 
the use of the strain energy method in characterizing 
damping of composite materials, but the effects of 
vibration coupling were not considered. 

The current analysis of damping is based on a pre- 
viously developed strain energy method I-9-14]. This 
method has recently been applied in the characteriza- 
tion of coupling effects on damping of symmetric 
composites, and only the results of the first flexural 
mode of vibration were reported [15, 16]. The strain 
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energy method was implemented in a three-dimen- 
sional finite element formulation to carry out the 
calculations of strain energy, coupling energy dissipa- 
tion and damping. The advantage of this method is 
that the effects of three-dimensional states of stress are 
considered in the analysis of damping. Thus, the en- 
ergy dissipation due to each of the six stress compon- 
ents (three in-plane stresses ~ ,  ~y and z~y, and three 
interlaminar stresses c~, z~= and ~y~) can be decom- 
posed from the total energy dissipation. The contribu- 
tion of damping due to each of the six resulting stress 
components can then be found by taking the ratio of 
energy dissipation due to each of the six stress 
components to the total energy dissipation of the 
composite [10]. However, in order to investigate 
the contribution of coupling energy dissipation to the 
total laminate damping, further decomposition of the 
resulting six energy dissipation terms was required, as 
demonstrated in this paper. The method presented 
here was designed for general application in dealing 
with all associated coupling modes in any laminated 
material or structure. 

The principal objectives of this paper are to describe 
the method for decomposing coupling energy dissipa- 
tion and to characterize its effects on damping of 
laminated composites. The technique described here 
was based on modifications of a previous develop- 
ment, which involves the decomposition of energy 
dissipation for the purpose of identifying the coupling 
energy dissipation of interest [15, 16]. In particular, 
a three-dimensional finite element analysis was per- 
formed for the evaluation of resonant frequencies and 
mode shapes. The strain energy method was then 
implemented in a finite element formulation to evalu- 
ate the composite damping based on the resulting 
mode shapes and damping properties of the individual 
layers. Thus, the effects of all three-dimensional states 
of stress, especially interlaminar shear stresses, were 
included in the analysis [11, 12]. The effects of coup- 
ling on damping were finally examined by decompos- 
ing the energy dissipation attributed to the coupling 
energy dissipation components of interest. The results 
presented here were based on the first three modes of 
vibration, including two flexural modes and one 
torsional mode. 

2. Coupling stiffnesses 
Before starting the analysis of vibration coupling ef- 
fects on damping of laminated composites, it is neces- 
sary to understand the relations between lamina and 
laminate coupling stiffnesses. The well-known classi- 
cal lamination theory is derived based on a two- 
dimensional, plane-stress analysis, and only in-plane 
forces and moments are considered. Accordingly, for 
laminates consisting of multiple generally orthotropic 
laminae, the resulting forces and moments in a lam- 
inate can be expressed as functions of lamina strains, 
curvatures and the associated laminate stiffnesses, 
which are usually written in a shortened form [17] 

= I : l  ,1, 

where A, B and D are extensional, coupling and bend- 
ing stiffness matrices of the laminate, respectively. 
These laminate stiffnesses can be related to lamina 
stiffnesses by the following equations: 

Aij = ~ (O_.ij) ~k) (Zk -- Zk- 1) (2) 
k = l  

- ,~k~ (z~  - z ~ - l )  
Bij = )-" (QiJ) 2 (3)  

k : l  

Dij = ~ (O.ij)(k)(z~, --Z2 a) (4) 
k = l  3 

where ((~j)(k) is the transformed reduced stiffnesses of 
the kth lamina [14], z is the laminate thickness coord- 
inate, k is the lamin a number, n is the total number of 
laminae and i, j = 1, 2, 6 (for two-dimensional' plane 
stress analysis). 

In this work, the graphite-epoxy composite lam- 
inates were analysed in two reinforcement configura- 
tions: '(i) [12(0)] symmetric laminates, and (ii) 
[6(0)/6( - 0)] antisymmetric laminates. Since the first 
model was a symmetric laminate, B~j = 0 and all the 
elements in the A and D matrices would be present 
because of couplings between bending and twisting. 
Such coupling is evidenced by the presence of laminate 
coupling stiffnesses A16 and D16. For the case of 
non-symmetric laminates, the B~j are not necessarily 
equal to zero and the coupling stiffnesses A16 and 
D16 may not exist. For example, since the second 
model used in this work was an antisymmetric lam- 
inate, and because the laminate was made of an even 
number of laminae (12 plies), the coupling stiffness 
B16 exists, but A16 and Da6 are both equal to zero. 

Since the classical lamination theory neglects the 
interlaminar forces and moments, inaccurate results 
are always present in such an analysis of mechanical 
properties of composite materials. The current damp- 
ing analysis, however, is based on a three-dimensional 
finite element analysis which includes all three-dimen- 
sional stresses and strains. It is therefore convenient to 
deal with a simpler but equivalent system of stresses 
and strains. The three-dimensional constitutive 
stress-strain relations for a linear elastic orthotropic 
lamina in non-principal coordinate directions x, y, 
z (where z is perpendicular to the laminate) are gener- 
ally written in a shortened form as 

~lk~ = C~ a(k~ (5) 

where (ylk~ is the stress matrix of the kth lamina, ~k/ is 
the strain matrix of the kth lamina and C ~k) is the 
transformed reduced stiffness matrix of the kth lamina. 

For a generally orthotropic lamina with a non-zero 
fibre orientation, the C matrix contains 20 non-zero 
elements (Cq, where i, j = 1, 2, 3, 4, 5, 6), 6 × 6 matrix 
for a three-dimensional analysis [17]). For the case of 
two-dimensional analysis, C is a 3 x 3 matrix (C~j, 
where i, j = 1, 2, 6), and (~q = (~ij as shown in Equa- 
tions 2-4. Since laminate stiffnesses such as A~j, 
B~j and D~j are derived from the lamina stiffnesses (~ij, 
a combined effect of laminate coupling stiffnesses A16, 
B16 and D16 can be characterized by lamina coupling 
stiffnesses (~16 (or Ca6), lamina thickness, and lam- 
inate stacking sequence. The effect of lamina coupling 
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stiffness Q26 (or C26), which characterizes coupling 
between the bending in the lamina width direction and 
the in-plane twisting, is trivial for composite beams, 
and would be more important for the case of com- 
posite plates. The models analysed here were based on 
composite beams, and the coupling effects would be 
dominated by (7~6. 

Accordingly, the combined effect of laminate coup- 
ling stiffnesses A~6, B16 and D~6 on damping can be 
studied by calculating the coupling energy dissipation 
contributed by the corresponding lamina coupling 
stiffness C~6. For example, C~6 can be used to charac- 
terize A~6 and D~6 in symmetric laminates, since 
B~6 = 0. For the case of antisymmetric laminates with 
an even number of plies, C~6 can be used to character- 
ize laminate coupling stiffness Ba 6, since both A ~ 6 and 
D~6 are equal to zero. The work presented here was 
based on a three-dimensional analysis, and the 20 
non-zero lamina stiffnesses (Cu) were used to calculate 
strain energy. The total strain energy of a laminate 
was calculated by summing strain energy stored in 
each lamina based on the resulting lamina stress and 
strain distributiofis, and was decomposed into 20 
strain energy terms, including the coupling strain en- 
ergy associated with the lamina coupling stiffness (7~6. 

3. Strain energy/damping analysis 
In the recent past, the strain energy method has been 
widely used in the characterization of damping of 
composite materials at both micromechanical and 
macromechanical levels [9-16]. The motivation for 
this work was to utilize the strain energy method in 
a finite element form to facilitate the analysis of 
vibration coupling effects on damping of laminated 
composites. We have previously developed a three- 
dimensional strain energy/damping equation for the 
prediction of damping of laminated composites 
[10-12]. The basis of this equation (Equation 6 below) 
is that the laminate loss factor (or damping) can be 
calculated by summing the energy dissipation in 
a composite laminate and dividing by the total strain 
energy stored in the laminate: 

1"1 
n 

= ~ [q~) W~) + rff)y --yw(k) + .,"(k)x~ --~y~v(k) 
k = l  

- - ( k )  V I z ( k )  + ] ] ( x k 2 ' w ( k ) ] / W l  + rl(z k) W(~ k)+ 'b,~--y~ - -  . . . .  

(6) 

where rl is the laminate loss factor (a measure of 
damping), k is the lamina number, n is the total num- 
ber of laminae, W~ is the total strain energy stored in 
a laminate at maximum displacement, rl~ I, rl~ ), 
r l~  are in-plane loss factors of the kth lamina, r I(k), 
rib}I, r l~ ) are interlaminar loss factors of the kth 
lamina, W ~  ), w(k) W (k) are in-plane strain energy ~'V y , ' '  x y  

terms of the kth lamina, and ,~z(k) w(k) W (k) are FV z , " y z  , " x z  

interlaminar strain energy terms of the kth lamina. 
The lamina in-plane loss factors were determined by 

the use of a micromechanical analysis, which involved 
the use of the elastic-viscoelastic correspondence prin- 
ciple and the transformation equations of  complex 
moduli for off-axis fibres along non-principal material 

directions [18, 19]. Accordingly, the in-plane loss fac- 
tors of a composite lamina can be expressed in terms 
of the corresponding constituent material properties. 
The resultant equations of the lamina in-plane loss 
factors are too long to be presented here. For a com- 
plete description of these micromechanical equations, 
the reader is referred to the references cited [18, 19]. 
Furthermore, since the matrix material is the bonding 
agent between two adjacent laminae, it is believed that 
the interlaminar energy dissipation is dominated by 
the matrix materials [10, 19]. For this reason, and 
because no micromechanical theory was available for 
the prediction of the lamina interlaminar loss factors, 
the matrix loss factors were used as the lamina inter- 
laminar loss factors to simplify the solution. In this 
work, the matrix loss factors were measured by the use 
of an impulse-frequency response technique [18, 19]. 

One of the advantages of the strain energy method 
is that the contribution of damping due to each of the 
six resulting stress components can be investigated by 
calculating the energy dissipation due to each of the 
components [10-12]. In this work, it was found that 
only the longitudinal normal stress ~ ,  in-plane shear 
stress z~y and the interlaminar shear stress z~ contrib- 
uted significantly to the total energy dissipation. This 
is because the total strain energy is dominated by 
these three major stresses. It should be mentioned 
that, although the effects of (yy, ~ and zy~ are trivial, 
their contribution to the total energy dissipation was 
included in the calculation of the total laminate damp- 
ing as shown in Equation 6. 

The strain energy corresponding to each of the three 
major stresses can be calculated based on the follow- 
ing equations 

W~ ) ~ o~  ) ~ ) d v  

w(k) 1 i 'v(k) 

f. 
w(k)  1 | XZ = 2 "r~2 Y~2 dv  = 

3 

~xx(k) 
VV X , X  Vu x , y  , 

+ W(~,, (7) 

w ( k )  _~ w ( k )  _~_ , , 1 ( k )  
x y ,  x ' '  x y , y  YP/ x y ,  

+ w (k) (8) ' '  xy, xy 

w(k) ~ w(k) (9) 
x z ,  ~ z  -~- , , x z ,  y z  

where Wx, Wxy and Wxz (with a superscript k) are the 
resulting three strain energy terms stored in the kth 
lamina due to Cyx, zxy and ~x~, respectively, v is the 
volume of the kth lamina and Wx.x etc. are strain 
energy terms defined later in Equations 10-13. The 
three major strain energy terms can be further decom- 
posed into ten strain energy terms as given in Equa- 
tions 7-9, which correspond to each of the associated 
non-zero elements of the lamina stiffness matrix. It 
was found that only five of the ten strain energy terms 
contributed greatly to the total strain energy for the 
laminates studied in this work. These five major strain 
energy terms consist of three non-coupling strain en- 
ergy terms (Wx, x, Wxy, xy and Wx . . . .  ) and two coupling 
strain energy terms (Wx,xy and W~y.x), and they are 
defined as 

W~)x, = -2 [C~k~ ~ ]  ~x-(k) dv (10) 

3 



(, 
w~k) �89 [ ~(6~ ~(k)-l~,(k) dv (11) x y , x y  J x y A  I x y  

w(k) 1 .f [ (~)4 . (k) l  ,,(k) dv (12) 
x z , x z  ~ 2 I X Z J  l X Z  

,:1/(k)vv x , x y  = -21 ~[ ~(lk6) 7~y)] ux-(k) dv = lrlr(k)gv xy,~- 

(13) 

It should be mentioned that Wx,~y = Wxy,x (Equation 
13), since the corresponding coupling stiffnesses 
are equal (216 = C61). Although W~.~y = W~y,x, this 
does not mean that coupling energy dissipation terms 
due to (~16 and C61 are the same. This is because the 
lamina loss factors corresponding to the two coupling 
strain energy terms are different. The contribution of 
energy dissipation due to each of the three major 
stresses can be expressed as 

Fx = Dx/Dt, Fxy = Dxy/Dt, Fx~ = Dx~/Dt 

(14) 

where Dx, Dxy, Dx~ are energy dissipation due to ~ ,  
~y and ~ ,  respectively; Fx, Fxy, F~ are fraction of 
damping due to o~, ~xy and ~ ,  respectively; and D t is 
the total energy dissipation in the laminate (=  11 W0. 

The two coupling strain energy terms W~,~y and 
W~y,~ shown in Equation 13 can be used to character- 
ize vibration coupling effects on damping. This is done 
by summing the contribution of coupling energy dissi- 
pation due to the two coupling strain energy terms; 
that is, 

(k) (k) (k) Fo = [n~ ) Wx,~ + nx, wx~,~] / (nw0 (15) 
k = l  

where F~ characterizes the effects of vibration coupling 
on damping in terms of the fraction of coupling energy 
dissipation in the total energy dissipation. It should be 
noticed that different lamina loss factors are used in 
the two coupling strain energy terms to calculate the 
total coupling energy dissipation. This is because 
W~,~y is decomposed from the extensional strain en- 
ergy W~ (Equation 7), and thus the extensional coup- 
ling energy dissipation is calculated based on the 
extensional loss factor rl~. On the other hand, the in- 
plane shear loss factor qxy is used for calculating the 
coupling energy dissipation due to W~y,~, which is 
decomposed from the in-plane shear strain energy 
Wxy (Equation 8). 

4. Finite e lement  model 
The finite element code used in this work was the SAP 
IV program [20]. The finite element model used in this 
study was made of three-dimensional eight-node thick 
shell elements. A typical finite element model used in 
this study is shown in Fig. 1. The model used only one 
element in the laminate width direction. This was 
based on a displacement study for 12-ply symmetric 
laminates with three elements in both the length and 
width directions. It was found that, although the re- 
sulting transverse displacements (in the thickness di- 
rection) varied drastically along the length direction, 
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Figure 1 A typical finite element model for 12-ply graphite-epoxy 
laminated cantilever beams. 

they remained nearly constant along the width direc- 
tion. This is because the model was made of a 12-ply 
thin laminate with a low width-to-thickness ratio 
(i.e. laminate having dimensions of 20.32cm 
length x 1.905 cm width x 0.152cm thickness). The 
distance between two adjacent nodes along the width 
direction was so small that not much variation in 
transverse displacements was observed between the 
two adjacent nodes. Thus, only one element is needed 
to model the laminate width dimension. However, in 
order to account for material discontinuity along the 
laminate thickness such as in the case of the antisym- 
metric laminates, two elements were used in the 
laminate thickness direction with each element repres- 
enting six laminae (lamina thickness--0.127mm) of 
the same fibre orientation (Fig. 1). Such a simplifica- 
tion is only appropriate for thin laminates. For  thick 
laminates, more elements need to be introduced in the 
laminate thickness direction [11, 12]. 

The number of elements used in the length direction 
was determined based on a strain energy convergence 
study [10]. The finite element model was started with 
a network of large elements, and the element size was 
reduced to determine the required element size for 
convergence. Accordingly, the final finite element 
model that was selected in this work consists of 520 
elements, which resulted in a total of 1560 nodes with 
4602 degrees of freedom. This model was used in both 
the symmetric and antisymmetric laminates in order 
to maintain the same element aspect ratio in both 
laminates. The finite element program was used to 
predict resonant frequencies and mode shapes, and 
since the program does not have the capability for 
calculating strain energy and damping, a modification 
of the program was required. This involves a Gaussian 
quadrature numerical integration for strain energy 
based on the resulting mode shapes. For a detailed 
description of the strain energy integration, the reader 
is referred to Hwang [19]. 

5. Results and discussion 
A free-vibration modal analysis was performed on 
graphitempoxy cantilever beams with two stacking 
sequencesi (i) 12-ply symmetric laminates [12(0)], and 
(ii) 12-ply antisymmetric laminates [6(0)/6( - 0)]. Ma- 
terial properties in principal material directions used 
as input data to the finite element analysis were 
adapted from previous work [10, 19]. The fibre ori- 
entation was varied from 0 ~ tO 90 ~ to study the effects 
of fibre orientation on vibration coupling and damp- 

4 



ing. It was found that only three of the resulting six 
stress components contributed greatly to the total 
damping. These three major stress components are the 
longitudinal normal stress (or bending stress, cry), the 
in-plane shear stress (r~y) and the interlaminar shear 
stress (Zxz). The energy dissipation due to these three 
stresses was further decomposed to identify the coup- 
ling energy dissipation. Table I shows the resulting 
contributions of the three major stress components. 
The results a re  presented based on the first three 
modes including two flexural modes and one torsional 
mode, which were defined based on the resulting mode 
shapes. 

According to the definition by Adams and Bacon 
[6], a laminate is said to be in "free flexure" when it is 
subjected to pure bending and any resulting twisting. 
On the other hand, a laminate is said to be in "pure 
flexure" when it is subjected to a pure bending, and the 
twisting is prevented by constraints [6]. Thus, except 
for the case of 0 ~ and 90 ~ laminates, none of the 
resulting modes were in pure flexure or pure torsion. 
In fact, they were in either free flexure or free torsion. 
This is because the modes were coupled with bending 
and twisting due to the coupling stiffness C16. As 
shown in the second column of Table I, 1F and 2F 
represent the first and the second flexural modes, 
respectively, and 1T is the first torsional mode. This 
notation will also be used later in the figures for the 
purpose of presenting the results. The distinction be- 
tween flexural and torsional modes was made accord- 
ing to the resulting mode shapes. For example, for 
a flexural mode, the resulting transverse displacement 
data along the flexural direction of interest must have 
the same sign (although the amount may be different 
due to the effects of coupling) over any cross-section of 

the laminate. On the other hand, a torsional mode is 
evidenced by the different signs of such transverse 
displacement data on opposite sides of the beams. 
Accordingly, for laminates with fibre orientation other 
than 0 ~ the first two modes were found to be in 
flexure, and the third mode was found to be in torsion. 
However, for the case of 0 ~ laminates, the second 
mode was found to be in torsion, and both the first 
and third modes were found to be in flexure. 

According to the results shown in Table I, the 
contribution of damping for the first flexural mode is 
dominated by the bending stress cyx. This was ex- 
pected, since the first mode is essentially in bending, 
and most of the strain energy stored in the laminate 
would be dominated by the bending strain energy. The 
difference in the contribution of damping between 
the two laminate models is that the contributions of 
damping such as Fx and F~ for the symmetric lam- 
inates are always higher than those of antisymmetric 
laminates. In contrast, the contribution of damping 
Fxy due to the in-plane shear stress in antisymmetric 
laminates is considerably higher than that of symmet- 
ric laminates. This is because more in-plane shear 
strain energy was generated in antisymmetric lam- 
inates due to discontinuity in material properties 
between the laminae. 

In the case of antisymmetric laminates, the three 
major components of damping for the second flexural 
mode do not show as much difference as those of the 
first flexural modes. This was not observed in the case 
of symmetric laminates. Instead, a drastic increase of 
the contribution of in-plane shear stress (Fxy) was 
found in symmetric laminates. This is probably due to 
the fact that more in-plane twisting strain energy was 
generated in the second mode since the two flexural 

TABLE I Contribution of damping due to the three major stress components zx~ , cr~ and r y. 

0 Mode 1-12(0)] [6(0)/6( - 0)] 
(deg) No. 

Cz L 4,  Cz ~ ~, 
(%) (%) (%) (%) (%) (%) 

0 1 F 27.2 72.8 0.0 27.2 72.8 0.0 
1T 1.3 0.6 98.1 1.3 0.6 98.1 
2 F 34.7 65.3 0.0 34.7 65.3 0.0 

15 1 F 10.1 81.4 8.4 3.0 51.5 45.4 
2F 3.7 46.9 49.4 3.2 50.8 45.9 
1T 3.6 10.9 85.4 0.7 23.0 73.6 

30 1 F 11.4 78.1 10.4 2.6 60.9 36.3 
2F 4.0 60.9 35.1 2.8 60.9 36.2 
1T 3.7 59.1 37.2 0.6 34.8 55.0 

45 1 F 15.9 75.8 8.1 4.1 62.5 33.1 
2F 6.3 63.0 35.6 4.3 62.7 32.8 
1T 6.0 62.3 31.7 0.7 24.3 51.3 

60 1F 19.7 76.0 4.1 8.3 61.7 29.6 
2F 11.7 64.3 23.9 8.6 61.5 29.4 
1T 11.1 62.9 25.9 8.9 61.3 29.3 

75 1 F 20.1 79.1 0.7 17.0 70.9 11.7 
2F 18.6 74.0 7.3 17.8 70.0 11.8 
1T 0.0 98.5 1.3 0.0 99.2 0.7 

90 1 F 19.2 80.8 0.0 19.2 80.8 0.0 
2 F 20.1 79.8 0.0 20.1 79.8 0.0 
IT 0.0 98.9 1.0 0.0 98.9 1.0 
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modes are not in pure flexure. Thus, an increase in the 
contribution of in-plane shear stress to damping was 
found in the second flexural mode, while the other two 
components were reduced. For the case of the tor- 
sional mode, it appears that both the bending stress, 
crx, and in-plane shear (or twisting) stress, ~y, contrib- 
uted greatly to the total energy dissipation as com- 
pared with the interlaminar shear stress, z~z. The con- 
tribution of the in-plane shear stress to damping is 
maximized at 0 ~ and it then decreases with increasing 
fibre angle. On the other hand, the contribution of 
bending stress to damping is a minimum at 0 ~ and it 
then increases up to a maximum at 90 ~ with increasing 
fibre orientation. 

Since the contribution of damping was dominated 
by the three major stress components, the resulting 
three strain renergy terms were further decomposed to 
identify the associated coupling strain energy and to 
study its effect on damping. Figs 2 and 3 show the 
resulting coupling contribution to damping as a func- 
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Figure 2 Contribution of damping due to bending twisting 
coupling with respect to fibre angle for symmetric graphite-epoxy 
laminates, [-t2(0)]: (O) Mode IF, ( e )  Mode 2F, (V) Mode 1T. 
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Figure 3 Contribution of damping due to bending-extensional 
coupling with respect to fibre angle for antisymmetric 
graphite-epoxy laminates, [6(0)/6( - 0)]: (O) Mode 1F, (e )  Mode 
2F, (V) Mode 1T. 

tion of fibre angle for symmetric and antisymmetric 
laminates, respectively. For the case of symmetric 
laminates, the coupling contribution is dominated by 
the coupling between bending and twisting. On the 
other hand, the coupling contribution to damping in 
antisymmetric laminates is governed by the coupling 
between bending and extension. As expected, no coup- 
ling contribution is made at the fibre angle of 0 ~ and 
90 ~ in either laminate model. It appears that the two 
flexural modes exhibited similar distributions, with 
a maximum coupling contribution at a fibre angle 
around 30 o . Similar results were also obtained by 
other investigators. For  example, Adams and Bacon 
[6] indicated that the damping peak near a fibre angle 
of 30 ~ is associated with the lamina coupling stiffness 
C16. However, no attempt was made to investigate the 
contribution of such a coupling to the total damping. 
In the present work, the effects of coupling on damp- 
ing is investigated in terms of the ratio of coupling 
energy dissipation to the total energy dissipation using 
the decomposition approach. Since the value of (~16 is 
maximized at 30 ~ a maximum coupling strain energy 
is generated at that angle, which in turn resulted in 
a maximum coupling energy dissipation. 

For the case of torsional modes, the coupling con- 
tr ibution is generally lower than those of the two 
flexural modes. The contribution of bending-twisting 
coupling to damping in symmetric laminates de- 
creases to zero at 75 ~ which is different from that of 
the two flexural modes. For  the case of antisymmetric 
laminates, although the maximum coupling contribu- 
tion in the torsional mode was found to be at a similar 
fibre angle as in the flexural modes, a discontinuity in 
coupling contribution to damping was found at a fibre 
angle around 45 ~ . This is probably because of the 
increase of the non-coupling strain energy due to the 
increase of torsional stiffness at that fibre angle. As 
will be shown later, the torsional frequency is maxi- 
mized at a fibre angle around 45 ~ for the case of 
antisymmetric laminates, because of the maximum 
torsional stiffness at that fibre angle. On the whole, it 
appears that the contribution of damping due to bend- 
ing-twisting coupling in symmetric laminates is higher 
than that due to bending-extensional coupling in anti- 
symmetric laminates. 

Figs 4 and 5 show the resulting total loss factor data 
as a function of fibre orientation for symmetric and 
antisymmetric laminates, respectively. The loss factor 
for the two flexural modes appears to increase with 
increasing fibre angle up to a maximum at a fibre 
angle near 30 ~ This is because a maximum coupling 
effect occurs at that fibre angle. It then gradually 
decreases with increasing fibre angle. Similar results 
were also reported by Adams and Bacon [6]. In both 
laminate models, the resulting loss factors for the 
torsional mode were higher than those of the two 
flexural modes. This was expected, since more twisting 
energy dissipation is generated in the torsional mode. 
It should be mentioned that, although the maximum 
coupling contribution in the torsional mode occurred 
at a fibre angle around 30 ~ the maximum loss factor, 
however, was found at the fibre angle of 0 ~ This is 
because the total torsional energy dissipation consists 
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Figure 4 Variation of total loss factor with fibre angle for 
symmetric graphite-epoxy laminates, [12(0)]: (O) Mode 1F, (0) 
Mode 2F, (V) Mode 1T. 
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Figure 6 Variation of resonant frequency with fibre angle for 
symmetric graphite-epoxy laminates, [12(0)]: (O) Mode 1F, (0) 
Mode 2F, (V) Mode 1T. 
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Figure 5 Variation of total loss factor with fibre angle for 
antisymmetric graphite-epoxy laminates, [6(0)/6( - 0)]: (O) Mode 
IF, (0) Mode 2F, (V) Mode 1T. 

350 

300 

ZhO 

0 10 20 30 40 50 60 70 80 90 
Fibre angle (de(j) 

Figure 7 Variation of resonant frequency with fibre angle for 
antisymmetric graphite-epoxy laminates, [6(0)/6( - 0)]: (O) Mode 
IF, (0) Mode 2F, (V) Mode 1T. 

of non-coupling and coupling energy dissipation, and 
the non-coupling energy dissipation has a more signi- 
ficant contribution to damping. Thus, although there 
is no coupling energy dissipated in the 0 ~ laminates, 
a maximum loss factor still exists at 0 ~ 

Figs 6 and 7 show the variation of resonant fre- 
quency with fibre orientation for symmetric and anti- 
symmetric laminates, respectively. The resulting 
frequency data for the two flexural modes generally 
exhibited similar distributions. That  is, the frequency 
decreases with increasing fibre orientation. This is due 
to the fact that the flexural stiffness of the beam 
decreases with increasing fibre orientation, and lower 
frequencies are generated as the flexural stiffness de- 
creases. The frequency distributions for the torsional 
mode, however, are not as smooth as those of the two 
flexural modes. For  example, in the case of symmetric 
laminates, the frequency of the torsional mode in- 
creases with increasing fibre orientation up to a max- 
imum at a fibre angle around 30 ~ and it then de- 
creases with increasing fibre orientation. This is 
probably because the combined effects of the bend- 

ing-twisting coupling stiffnesses (A16 and O16 ) in the 
torsional mode are maximized at that fibre angle. 
A similar trend occurred in the torsional mode of 
antisymmetric laminates, with a difference that the 
maximum torsional frequency was found at a fibre 
angle around 45 ~ . It is again likely that the 
bending-extensional coupling stiffness (B16) of the 
torsional mode is maximized due to a maximum 
torsional stiffness at that fibre angle. 

6.  C o n c l u d i n g  r e m a r k s  
A new method for characterizing the vibration coup- 
ling effects on damping of composite materials has 
been introduced. The application of this method to 
characterize the effects of bending twisting coupling 
and bending-extensional coupling on damping in 
both symmetric and antisymmetric laminates has been 
demonstrated. A maximum coupling effect on damp- 
ing was found at a fibre angle around 30 ~ for the first 
three modes of vibration. The coupling effects tend to 
increase the vibration damping in the flexural modes. 



The non-coupling energy dissipation was found to be 
more dominant  for the flexural modes at a fibre angle 
of  90 ~ . T h e  n o n - c o u p l i n g  e n e r g y  d i s s i p a t i o n  for  t o r -  

s i o n a l  m o d e s  a p p e a r s  to  b e  m o r e  d o m i n a n t  a t  a f ib re  

ang le  of  0 ~ h o w e v e r .  O n  t he  w h o l e ,  t he  m e t h o d  de -  

s c r i b e d  in  th i s  p a p e r  p r o v i d e s  c o n s i d e r a b l e  p o t e n t i a l  

for  full t h r e e - d i m e n s i o n a l  a n a l y s i s  in  t he  d e s i g n  

a n d  v i b r a t i o n  c o n t r o l  of  c o m p o s i t e  m a t e r i a l s  a n d  

s t r u c t u r e s .  
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